Grade IX

Mathematics - Chapter I

1. Find the decimal expansion of $\frac{10}{3}$, $\frac{7}{8}$, and $\frac{1}{7}$

3	10
	9
	10
	9
	10
	9
	10
	9

8	7.0	
	64	
Ī	60	
	56	
Ì	40	
	40	
	00	

5	10
	7
	30
	28
	20
	14
	60
	56
	40
	35
-	50
	49

 $\frac{10}{3}$

Solution: (i) Qudient; 3.333...

- (ii) Divisor: 3
- (iii) Remainder = 1
- 2. Express 3.142678 as a rational number.

Solution: $3.142678 = \frac{3142678}{1000000}$

3. Show that $0.3333... = 0.\overline{3}$ (Read block at 3) can be expressed in the form of $\frac{p}{q}$.

Where p and q are integers and $q \neq 0$.

Solution\; Since we do not know what $0.\overline{3}$ is, let's ca;; it x and $80 \times 0.3333...$ 10x=3.333...

3.3333... = 3+x [because x=0.3333...

 $\therefore 10 = 3 + x$

10x - x = 3

9x = 3 $\therefore x = \frac{3}{9} = \frac{1}{3} = 0.3333... = 0.\overline{3}$

4. Show that 1.272727...=1.27 can be expressed in the form of $\frac{p}{q}$ where p and q are integers and $q \neq 0$.

Solution: Let x = 1.272727 ...

Since two digits are respeating, multiply by 100

$$100x = 127.2727 \dots$$

$$100x = 126 + 1.272727$$

$$100x = 126 + x$$

$$100x - x = 126$$

$$99x = 126$$

$$x = \frac{126}{99} = \frac{14}{11}$$

$$1.\overline{27} = \frac{14}{11}$$

5. Show that $0.2353535... = 0.2\overline{35}$ can be expressed in the form $\frac{p}{q}$ where p and q are integers and $q \neq 0$.

Solution: Let $x=0.2\overline{35}$. Here 2 doesnot repeat, the block 35 repeats. Since 2 digits are repeating we multiply x by 100

$$100x = 23.53535 \dots$$

$$100x = 23.3 + 0.23535 \dots = 23.3 + x$$

$$100x - x = 23.3$$

$$99x = 23.3$$

$$x = \frac{23.3}{99} = \frac{233}{990}$$

Homework:

1. Write the decimal form of the following

(i)
$$\frac{3}{13}$$

$$(ii) \frac{1}{11}$$

$$(iii) \frac{2}{11}$$

(iv)
$$\frac{329}{400}$$

- (i) $\frac{3}{13}$ (ii) $\frac{1}{11}$ (iii) $\frac{2}{11}$ (iv) $\frac{329}{400}$ 2. Express the following in the form of $\frac{p}{q}$, $q \neq 0$
 - (i) $0.\overline{6}$
- (ii) 0.47
- 3. Express 0.99999... in the form of $\frac{p}{q}$