HOLY TRINITY INTERNATIONAL SCHOOL

Mathematics Grade X

1. Prove that $\sqrt{2}$ is an irrational number.

Solution:

Let's assume that $\sqrt{2}$ is a rational number. Let $\sqrt{2} = \frac{a}{b}$, where a and b are co primes

 $\left[\frac{a}{b}\right]$ is the general form of a rational number $\left[\frac{a}{b}\right]$

 $(\sqrt{2})^2 = (\frac{a}{b})^2$ [squaring on both sides]

 $2b^{\frac{n}{2}} = a^2$ (1) { :. cross multiplication}

∴ 2 is a factor of a²

Then 2 is also a factor of a.

Let's assume that a = 2 c in equation (i)

 $\therefore 2b^2 = (2c)^2$

 $2b^2 = 4c^2$ $b^2 = 2c^2$

: 2 is a factor of b2

: 2 is also a factor of b.

Then we get 2 is a common factor of both a and b. This contradicts the fact that a and b are co-primes.

: [co-primes have no common factor other than 1]

.. our assumption is wrong.

Then we conclude that $\sqrt{2}$ is an irrational number.

2. Prove that $\sqrt{3}$ is an irrational number. solution:

Let's assume that $\sqrt{3}$ is a rational number. Let $\sqrt{3} = \frac{a}{b}$ where a and b are coprimes.

 $(\sqrt{3})^{2} = \frac{a^{2}}{b^{2}}$ $3 = \frac{a^{2}}{b^{2}}$

 $3b^2 = a^2$ (1)

 \therefore 3 is a factor of a^2

.. Then 3 is also a factor of a.

Let a = 3c. in equa (1)

 $3b^2 = (3c)^2$ $3b^2 = 9c^2$

 $h^2 = 3c^2$

: 3 is a factor of b²

Then 3 will be a factor of b.

:3 will be a common factor of both a and b. This contradicts the fact that a and b are coprimes. .. Our assumption is wrong.

Now we prove that $\sqrt{3}$ is an irrational number.

Home work

- Prove that $\sqrt{5}$ is an irrational number.
- 2. Prove that $\sqrt{7}$ is an irrational number.